Publications

2024

Soule, L.D., Skrajewski-Schuler, L., Branch, S.A., McMahon, T.J., Spence, D.M. Toward translational impact of low-glucose strategies on red blood cell storage optimization. ACS Pharmacol. Transl. Sci. 2024, https://doi.org/10.1021/acsptsci.4c00018

2023

Skrajewski-Schuler, L.A., Soule, L.D., Geiger, M., Spence D. UPLC-MS/MS method for quantitative determination of the advanced glycation endproducts Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine. Anal. Methods 202315, 6698-6705, https://doi.org/10.1039/D3AY01817B

Hoehn, B., Soule, L., Skrajewski, L, Spence, D., Zhu, H., McMahon, T.J. Novel normoglycemic human RBC storage: post-transfusion respiratory sequelae in nude mice. Am. J. Respir. Crit. Care Med. 2023207, A1698, https://doi.org/10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A1698

Heller, A.A., Geiger, M.K., Spence, D.M. A 3D-printed multi-compartment device that enables dynamic PK/PD profiles of antibiotics. Anal. Bioanal. Chem. 2023, 415, 6135-6144, https://doi.org/10.1007/s00216-023-04899-x

2022

Geiger, M., Hayter, E., Martin, R.S., Spence, D. Red blood cells in type 1 diabetes and multiple sclerosis and technologies to measure their emerging roles. J. Transl. Autoimmun. 2022, 10.1016/j.jtauto.2022.100161

Hayter, E.A., Azibere, S., Skrajewski, L.A., Soule, L.D., Spence, D.M., Martin, R.S. A 3D-printed, multi-modal microfluidic device for measuring nitric oxide and ATP release from flowing red blood cells. Anal Methods 2022, 14, 3171-3179, https://doi.org/10.1039/D2AY00931E

Jacobs, M., Geiger, M., Summers, S., Janes, T., Boyea, R., Zinn, K., Aburashed, R., Spence,D. Interferon-β decreases the hypermetabolic state of red blood cells from patients with multiple sclerosis. ACS Chem. Neurosci. 2022, doi.org/10.1021/acschemneuro.2c00332

Jacobs, M.J., Geiger, M.K., Summers, S.E., DeLuca, C.P., Zinn, K.R., Spence, D.M. Albumin glycation affects the delivery of C-peptide to the red blood cells. ACS Meas. Sci. Au. 2022, 2(3), 278-286, doi.org/10.1021/acsmeasuresciau.2c00001

Liu, Y., Hesse, L.E., Geiger, M.K., Zinn, K.R., McMahon, T.J., Chen, C., Spence, D.M. A 3D-printed transfusion platform reveals beneficial effects of normoglycemic erythrocyte storage solutions and a novel rejuvenating solution. Lab Chip. 2022, 22, 1310-1320, doi.org/10.1039/D2LC00030J

2021

Keshavarz, H., Meints, L.M., Geiger, M. K., Zinn, K.R., Spence, D.M. Specific binding of leptin to red blood cells delivers a pancreatic hormone and stimulates ATP release. Mol. Pharm. 2021, 18 (6), 2438-2447. https://doi.org/10.1021/acs.molpharmaceut.1c00300

2020

Geiger, M., Janes, T., Keshavarz, H., Summers, S., Pinger, C., Fletcher, D., Zinn, K., Tennakoon, M., Karunarathne, A., Spence, D.  A C-peptide complex with albumin and Zn2+ increases measurable GLUT1 levels in membranes of human red blood cells. Sci. Rep. 2020, 10 (17493), 10.1038/s41598-020-74527-6

Ghanbarpour, A., Santos, E.M., Pinger, C., Assar Z., Nasr, S.H., Vasileiou, C., Spence, D., Borhan, B., Geiger, J.H. Human cellular retinol binding protein II forms a domain-swapped trimer representing a novel fold and a new template for protein engineering. ChemBioChem 2020, 21(22), 3192-3196, https://doi.org/10.1002/cbic.202000405

Jacobs, M.J., Pinger, C.W., Castiaux, A.D., Maloney, K.J., Spence, D.M. A novel 3D-printed centrifugal ultrafiltration method reveals in vivo glycation of human serum albumin decreases its binding affinity for zinc. Metallomics 2020, 12(7), 1036-1043, https://doi.org/10.1039/d0mt00123f

Pinger, C., Geiger, M., & Spence, Dana.  Applications of 3D-printing for improving chemistry education. J. Chem. Edu. 2020, 97 (1), 112-117, https://doi.org/10.1021/acs.jchemed.9b00588

2019

Castiaux, A.D., Spence, D.M., Martin, R.S. Review of 3D cell culture with analysis in microfluidic systems. Anal. Methods, 2019, 11, 4220-4232, https://doi.org/10.1039/C9AY01328H

Castiaux, A.D., Pinger, C.W., Hayter, E.A., Bunn, M.E., Martin, R.S., Spence, D.M. PolyJet 3D-printed enclosed microfluidic channels without photocurable supports. Anal. Chem. 2019, 91(10), 6910-6917, https://doi.org/10.1021/acs.analchem.9b01302

Ghanbarpour, A., Pinger, C., Salmani, R.E., Assar, Z., Santos, E.M., Nosrati, M., Pawlowski, K., Spence, D., Vasileiou, C., Jin, X., Borhab, B., Geiger, J.H. Engineering the hCRBPII domain-swapped dimer into a new class of protein switches. J. Am. Chem. Soc. 2019, 141(43), 17125-17132, https://doi.org/10.1021/jacs.9b04664

Heller, A.A., Spence, D.M. A rapid method for post-antibiotic bacterial susceptibility testing. PLOS One 2019, https://doi.org/10.1371/journal.pone.0210534

Huang, S., Aregullin, E.O., Gosnell, J.M., Samuel, B.P., Kaley, V.R., Castiaux, A., Pinger, C., Apkinar, M.H., Chinnadurai, P., Spence, D.M., Contag, C.H., Vettukattil, J.J. SN Compr. Clin. Med. 2019, 1, 996-1000, https://doi.org/10.1007/s42399-019-00169-z

2018

Castiaux, A.D., Pinger, C.W., Spence, D.M. Ultrafiltration binding analyses of glycated albumin with a 3D-printed syringe attachment. Anal. Bioanal. Chem. 2018, 410, 7565-7573, https://doi.org/10.1007/s00216-018-1373-3

Janes, T.M., Spence, D.M. Steroid inhibition of erythrocyte-derived ATP reduces endothelial cell production of nitric oxide in a 3D-pritned fluidic model. Anal. Methods 2018, 10, 3416-3422, https://doi.org/10.1039/C8AY00870A

Pinger, C.W, Castiaux, A., Speed, S., Spence, D.M. Plate reader compatible 3D-printed device for teaching equilibrium dialysis binding assays. J. Chem. Educ. 2018, 95(9), 1662-1667, https://doi.org/10.1021/acs.jchemed.8b00215

2017

Gross, B., Lockwood, S.Y., Spence, D.M. Recent advances in analytical chemistry by 3D printing. Anal. Chem. 2017, 89(1), 57-70, https://doi.org/10.1021/acs.analchem.6b04344

Pinger, C.W., Entwistle, K.E., Bell, T.M., Liu, Y., Spence, D.M. C-peptide replacement therapy in type 1 diabetes: are we in the trough of disillusionment? Mol. BioSyst. 2017, 8, 1432-1437, https://doi.org/10.1039/C7MB00199A

Pinger, C.W., Heller, A.A., Spence, D.M. A printed equilibrium dialysis device with integrated membranes for improved binding affinity measurements. Anal. Chem., 2017, 89(14), 7302-7306, https://doi.org/10.1021/acs.analchem.7b01848

2016

Chen, C., Mehl, B.T., Munshi, A.S., Townsend, A.D., Spence, D.M., Martin, R.S. 3D-printed microfluidic devices: fabrication, advantages and limitations-a mini review. Anal. Methods, 2016, 8, 6005-6012, https://doi.org/10.1039/C6AY01671E

LaBonia, G.J., Lockwood, S.Y., Heller, A.A., Spence, D.M., Hummon, A.B. Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry. Proteomics 2016, 11-12, 1814-1821, https://doi.org/10.1002/pmic.201500524

Lockwood, S.Y., Meisel, J.E., Monsma, F.J., Spence, D.M. A diffusion-based and dynamic 3D-printed device that enables parallel in vitro pharmacokinetic profiling of molecules. Anal. Chem. 2016, 88(3), 1864-1870, https://doi.org/10.1021/acs.analchem.5b04270

Lockwood, S.Y., Summers, S., Eggenberger, E., Spence, D.M. An in vitro diagnostic for multiple sclerosis based on C-peptide binding to erythrocytes. EBioMedicine 2016, 11, 249-252, https://doi.org/10.1016/j.ebiom.2016.07.036

Mu, R., Chen, C., Wang, Y., Spence, D.M. A quantitative, in vitro appraisal of experimental low-glucose storage solutions used for blood banking. Anal. Methods 2016, 8, 6856-6864, https://doi.org/10.1039/C6AY02128J

Saytashev, I., Glenn R., Murashova, G.A., Osseiran, S., Spence, D., Evans, C.L., Dantus, M. Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood cells. Biomed. Opt. Express 2016, 7(9), 3449-3460, https://doi.org/10.1364/BOE.7.003449

2015

Gross, B.C., Anderson, K.B., Meisel, J.E, McNitt, M.I, Spence, D.M. Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis. Anal. Chem. 2015, 87(12), 6335-6341, https://doi.org/10.1021/acs.analchem.5b01202

Liu, Y., Chen, C., Summers, S., Medawala, W., Spence, D.M. C-peptide and zinc delivery to erythrocytes requires the presence of albumin: implications in diabetes explored with a 3D-printed fluidic device. Integr. Biol. 2015, 7(5), 534-543, https://doi.org/10.1039/c4ib00243a

2014

Chen, C., Wang, Y., Lockwood, S.Y., Spence, D.M. 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. Analyst 2014, 139, 3219-3226, https://doi.org/10.1039/C3AN02357E

Erkal, J.L., Selimovic, A., Gross, B.C., Lockwood, S.Y., Walton, E.L., McNamara, S., Martin, R.S., Spence, D.M. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip, 2014, 14, 2023-2032, https://doi.org/10.1039/C4LC00171K

Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C., Spence, D.M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 2014, 86(7), 3240-3253, https://doi.org/10.1021/ac403397r

Lockwood, S.Y., Erkal, J.L., Spence, D.M. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea. Nitric Oxide 2014, 38, 1-7, https://doi.org/10.1016/j.niox.2014.02.003

Selimovic, A., Erkal, J.L, Spence, D.M., Martin, R.S. Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release. Analyst 2014, 139, 5686-5694, https://doi.org/10.1039/C4AN01062K

Wang, Y., Giebink, A., Spence, D.M. Microfluidic evaluation of red cells collected and stored in modified processing solutions used in blood banking. Integr. Biol. 2014, 6(1), 65-75, https://doi.org/10.1039/c3ib40187a

2013

Anderson, K.B., Lockwood, S.Y., Martin, R.S., Spence, D.M. A 3D printed fluidic device that enables integrated features. Anal. Chem. 2013, 85(12), 5622-5626, https://doi.org/10.1021/ac4009594

Anderson, K.B., Halpin, S.T., Johnson, A.S., Martin, R.S., Spence, D.M. Integration of multiple components in polystyrene-based microfluidic devices part II: cellular analysis. Analyst 2013, 138, 137-143, https://doi.org/10.1039/C2AN36171J

Giebink, A.W., Vogel, P.A., Medawala, W., Spence, D.M. C-peptide-stimulated nitric oxide production in a cultured pulmonary artery endothelium is erythrocyte mediated and requires Zn2+. Diabetes Metab. Res. Rev. 2013, 29(1), https://doi.org/10.1002/dmrr.2359

Johnson, A.S., Anderson, K.B., Halpin, S.T., Kirkpatrick, D.C., Spence, D.M., Martin, R.S. Integration of multiple components in polystyrene-based microfluidic devices part I: fabrication and characterization. Analyst 2013, 138, 129-136, https://doi.org/10.1039/C2AN36168J

2012

Anderson, K.B., Karunarathne, W., Spence, D.M. Measuring P2X1 receptor activity in washed platelets in the absence of exogenous apyrase. Anal. Methods 2012, 4, 101-105, https://doi.org/10.1039/C1AY05530E

Giebink, A.W., Vogel, P.A., Medawala, W., Spence, D.M. C-peptide-stimulated nitric oxide production in a cultured pulmonary artery endothelium is erythrocyte mediated and requires Zn2+. Diabetes Metab. Res. Rev. 2012, 29(1), 44-52, https://doi.org/10.1002/dmrr.2359

Spence, D.M. (2012). The effect of combined C-peptide and zinc on cellular function. In Sima, A.A.F. (Ed.). Diabetes & C-peptide: scientific and clinical aspects (pp. 17-29). Human Press. https://doi.org/10.1007/978-1-61779-391-2_3

2011

Halpin, S.T., Anderson, K.B., Vogel, P.A., Spence, D.M. The red blood cell and nitric oxide: derived, stimulated, or both? The Open Nitric Oxide Journal 2011, 3(Suppl 1-M2), 8-15, http://dx.doi.org/10.2174/1875042701103010008

Vogel, P.A., Halpin, S.T., Martin, R.S., Spence, D.M. Microfluidic transendothelial electrical resistance measurement device that enables blood flow and postgrowth experiments. Anal. Chem. 2011, 83(11), 4296-4301, https://doi.org/10.1021/ac2004746

2010

Halpin, S.T., Spence, D.M. Direct plate-reader measurement of nitric oxide released from hypoxic erythrocytes flowing through a microfluidic device. Anal. Chem. 2010, 82(17), 7492-7497, https://doi.org/10.1021/ac101130s

Keltner, Z., Meyer, J.A., Johnson, E.M., Palumbo, A.M., Spence, D.M., Reid, G.E. Mass spectrometric characterization and activity of zinc-activated proinsulin C-peptide and C-peptide mutants. Analyst 2010, 135, 278-288, https://doi.org/10.1039/B917600D

Letourneau, S., Hernandez, L., Faris, A.N., Spence, D.M. Evaluating the effects of estradiol on endothelial nitric oxide stimulated by erythrocyte-derived ATP using a microfluidic approach. Anal. Bioanal. Chem. 2010, 397, 3369-3375, https://doi.org/10.1007/s00216-010-3687-7

Raththagala, M., Karunarathne, W., Kryziniak, M., McCracken, J., Spence, D.M. Hydroxyurea stimulates the release of ATP from rabbit erythrocytes through an increase in calcium and nitric oxide production. Eur. J. Pharmacol. 2010, 645(1-3), 32-38, https://doi.org/10.1016/j.ejphar.2010.07.012

Tolan, N.V., Meyer, J.A, Ku, C., Karunarathne, W., Spence, D.M. Use of the red blood cell as a simple drug target and diagnostic by manipulating and monitoring its ability to release adenosine triphosphate (ATP). Pure Appl. Chem. 2010, 82(8), 1623-1634, https://doi.org/10.1351/PAC-CON-10-02-10

2009

D’Amico Oblak, T., Meyer, J.A., Spence, D.M. A microfluidic technique for monitoring bloodstream analytes indicative of C-peptide resistance in type 2 diabetes. Analyst, 2009, 134, 188-193, https://doi.org/10.1039/B816740K

Karunarathne, W., Ku, C., Spence, D.M. The dual nature of extracellular ATP as a concentration-dependent platelet P2X1 agonist and antagonist. Integr. Biol. 2009, 1(11-12), 655-663, https://doi.org/10.1039/b909873a

Keltner, Z., Meyer, J.A., Johnson, E.M., Palumbo, A.M., Spence, D.M., Reid, G.E. Mass spectrometric characterization and activity of zinc-activated proinsulin C-peptide and C-peptide mutants. Analyst 2009, 135, 278-288, https://doi.org/10.1039/B917600D

Meyer, J.A., Spence, D.M. A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics 2009, 1(1), 32-41, https://doi.org/10.1039/b817203j

Meyer, J.A., Subasinghe, W., Sima, A.A.F., Keltner, Z., Reid, G.E., Daleke, D., Spence, D.M. Zinc-activated C-peptide resistance to the type 2 diabetic erythrocyte is associated with hyperglycemia-induced phosphatidylserine externalization and reversed by metformin. Mol. BioSyst. 2009, 5, 11157-1162, https://doi.org/10.1039/B908241G

Medwala, W., McCahill, P., Giebink, A., Meyer, J., Ku, C., Spence, D.M. A molecular level understanding of zinc activation of C-peptide and its effects on cellular communication in the bloodstream. Rev. Diabet. Stud. 2009, 6(3), 148-158, https://doi.org/10.1900/rds.2009.6.148

Tolan, N.V., Genes, L.I., Subasinghe, W., Raththagala, M., Spence, D.M. Personalized metabolic assessment of erythrocytes using microfluidic delivery to an array of luminescent wells. Anal. Chem. 2009, 81(8), 3102-3108, https://doi.org/10.1021/ac900084g

2008

Faris, A., Spence, D.M. Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes. Analyst 2008, 133, 678-682, https://doi.org/10.1039/B719990B

Ku, C., D’Amico Oblak, T., Spence, D.M. Interactions between multiple cell types in parallel microfluidic channels: monitoring platelet adhesion to an endothelium in the presence of an anti-adhesion drug. Anal. Chem. 2008, 80(19), 7543-7548, https://doi.org/10.1021/ac801114j

Meyer, J.A., Froelich, J.M., Reid, G.E., Karunarathne, W.K.A., Spence, D.M. Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter. Diabetologia 2008, 51, 175-182, https://doi.org/10.1007/s00125-007-0853-3

Subasinghe, W., Spence, D.M. Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes. Anal. Chim. Acta 2008, 2(23), 227-233, https://doi.org/10.1016/j.aca.2008.04.061

Tolan, N., Genes, L.I., Spence, D.M. Merging microfluidics with microtitre technology for more efficient drug discovery. JALA 2008, 13(5), 275-279, https://doi.org/10.1016/j.jala.2008.05.002

2007

Carroll, J.S., Ku,C., Karunarathne,W., Spence, D.M. Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream. Anal. Chem. 2007, 79(14), 5133-5138, https://doi.org/10.1021/ac0706271

Genes, L.I., Tolan, N.V., Hulvey, M.K., Martin, R.S., Spence, D.M. Addressing a vascular endothelium array with blood components using underlying microfluidic channels. Lab Chip 2007, 7, 1256-1259, https://doi.org/10.1039/B712619K

Hulvey, M.K., Genes, L.I., Spence, D.M., Martin, R.S. Fabrication and evaluation of a 3-dimensional microchip device where carbon microelectrodes individually address channels in the separate fluidic layers. Analyst 2007, 132, 1246-1253, https://doi.org/10.1039/B711148G

Ku, C., Karunarathne, W., Kenyon, S., Root, P., Spence, D. Fluorescence determination of nitric oxide production in stimulated and activated platelets. Anal. Chem. 2007, 79(6), 2421-2426, https://doi.org/10.1021/ac061572q

2006

Carroll, J., Raththagala, M., Subasinghe, W., Baguzi, S., D’amico Oblack, T., Root, P., Spence, D. An altered oxidant defense system in red blood cells affects their ability to release nitric oxide-stimulating ATP. Mol. BioSyst. 2006, 2, 305-311, https://doi.org/10.1039/B604362N

D’Amico Oblak, T. Root, P., Spence, D.M. Fluorescence monitoring of ATP-stimulated, endothelium-derived nitric oxide production in channels of a poly(dimethylsiloxane)-based microfluidic device. Anal. Chem. 2006, 78(9), 3193-3197, https://doi.org/10.1021/ac052066o

Martin, R.S., Root, P.D., Spence, D.M. Microfluidic technologies as platforms for performing quantitative cellular analyses in an in vitro environment. Analyst 2006, 131, 1197-1206, https://doi.org/10.1039/B611041J

Price, A.K., Martin, R.S., Spence, D.M. Monitoring erythrocytes in a microchip channel that narrows uniformly: towards an improved microfluidic-based mimic of the microcirculation. J. Chromatogr. A 2006, 1111(2), 220-227, https://doi.org/10.1016/j.chroma.2005.07.083

Raththagala, M., Root, P.D., Spence, D.M. Dynamic monitoring of glutathione in erythrocytes, without a separation step, in the presence of oxidant insult. Anal. Chem. 2006, 78(24), 8556-8560, https://doi.org/10.1021/ac061163u

2005

Li, M.W., Spence, D.W., Martin, R.S. A microchip-based system for immobilizing PC 12 cells and amperometrically detecting catecholamines released after stimulation with calcium. Electroanalysis 2005, 17(13), 1171-1180, https://doi.org/10.1002/elan.200403231

Spence, D.M. Automation and microfluidic assays: in vitro models of the mammalian microcirculation. JALA 2005,10(4), 270-275, https://doi.org/10.1016/j.jala.2005.06.006

2004

Kovarik, M.L., Torrence, N.J., Spence, D.M., Martin, R.S. Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses. Analyst, 2004, 129, 400-405, https://doi.org/10.1039/B401380H

Price, A.K., Fischer, D.J., Martin, R.S., Spence, D.M. Deformation-induced release of ATP from erythrocytes in poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels. Anal. Chem. 2004, 76(16), 4849-4855, https://doi.org/10.1021/ac0495992

Spence, D.M., Torrence, N.J., Kovarik, M.L., Martin, R.S. Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst 2004, 129, 995-1000, https://doi.org/10.1039/B410547H

Spence, D.M. Bioanalytical challenges for analytical chemists. Analyst 2004, 129, 102-104, https://doi.org/10.1039/B315024K

2003

Fischer, D.J., Torrence, NJ., Sprung, R.J., Spence, D.M. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo. Analyst 2003, 128, 1163-1168, https://doi.org/10.1039/B308225N

Gordito, M.P., Kotsis, D., Minteer, S.D., Spence, D.M. Flow-based amperometric detection of dopamine in an immobilized cell reactor. J. Neurosci. Methods 2003, 124(2), 129-134, https://doi.org/10.1016/S0165-0270(02)00383-7

Kotsis, D., Spence, D. A quantitative examination of some analytes involved in the control of pulmonary resistance by employing various microflow techniques and novel bio-reactors. Rev. Anal. Chem. 2003, 22(4), 235-253, https://doi.org/10.1515/REVAC.2003.22.4.235

Kotsis, D.H., Spence, D.M. Detection of ATP-induced nitric oxide in a biomimetic circulatory vessel containing an immobilized endothelium. Anal. Chem. 2003, 75(1), 145-151, https://doi.org/10.1021/ac0258249

Sprague, R.S., Olearczyk, J.J., Spence, D.M., Stephenson, A.H., Sprung, R.W., Longigro, A.J. Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am. J. Physiol. Heart Circ. Physiol. 2003, 285(2), H693-H700, https://doi.org/10.1152/ajpheart.01026.2002

2002

Sprung, R., Sprague, R., Spence, D. Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo. Anal. Chem. 2002, 74(10), 2274-2278, https://doi.org/10.1021/ac011144e

2001

Edwards, J., Sprung, R., Sprague, R., Spence, D. Chemiluminescence detection of ATP release from red blood cells upon passage through microbore tubing. Analyst 2001, 126, 1257-1260, https://doi.org/10.1039/B100519G

2000

Edwards, J., Patel, A., Spence, D.M. Performance enhancement in flow reversal flow injection using on-capillary detection. Anal. Chim. Acta 2000, 417(2), 185-190, https://doi.org/10.1016/S0003-2670(00)00928-4